A state space framework for automatic forecasting using exponential smoothing methods
نویسندگان
چکیده
We provide a new approach to automatic forecasting based on an extended range of exponential smoothing methods. Each method in our taxonomy of exponential smoothing methods provides forecasts that are equivalent to forecasts from a state space model. This equivalence allows: (1) easy calculation of the likelihood, the AIC and other model selection criteria; (2) computation of prediction intervals for each method; and (3) random simulation from the underlying state space model. We demonstrate the methods by applying them to the data from the M-competition and the M3-competition. The method provides forecast accuracy comparable to the best methods in the competitions; it is particularly good for short forecast horizons with seasonal data. 2002 International Institute of Forecasters. Published by Elsevier Science B.V. All rights reserved.
منابع مشابه
Automatic forecasting with a modified exponential smoothing state space framework
A new automatic forecasting procedure is proposed based on a recent exponential smoothing framework which incorporates a Box-Cox transformation and ARMA residual corrections. The procedure is complete with well-defined methods for initialization, estimation, likelihood evaluation, and analytical derivation of point and interval predictions under a Gaussian error assumption. The algorithm is exa...
متن کاملAutomatic Time Series Forecasting: The forecast Package for R
Automatic forecasts of large numbers of univariate time series are often needed in business and other contexts. We describe two automatic forecasting algorithms that have been implemented in the forecast package for R. The first is based on innovations state space models that underly exponential smoothing methods. The second is a step-wise algorithm for forecasting with ARIMA models. The algori...
متن کاملForecasting time series with complex seasonal patterns using exponential smoothing
A new innovations state space modeling framework, incorporating Box-Cox transformations, Fourier series with time varying coefficients and ARMA error correction, is introduced for forecasting complex seasonal time series that cannot be handled using existing forecasting models. Such complex time series include time series with multiple seasonal periods, high frequency seasonality, non-integer s...
متن کاملForecasting based on state space models for exponential smoothing
In business, there is a frequent need for fully automatic forecasting that takes into account trend, seasonality and other features of the data without need for human intervention. In supply chain management, for example, forecasts of demand are required on a regular basis for very large numbers of time series, so that inventory levels can be planned to provide an acceptable level of service to...
متن کاملA new adaptive exponential smoothing method for non-stationary time series with level shifts
Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000